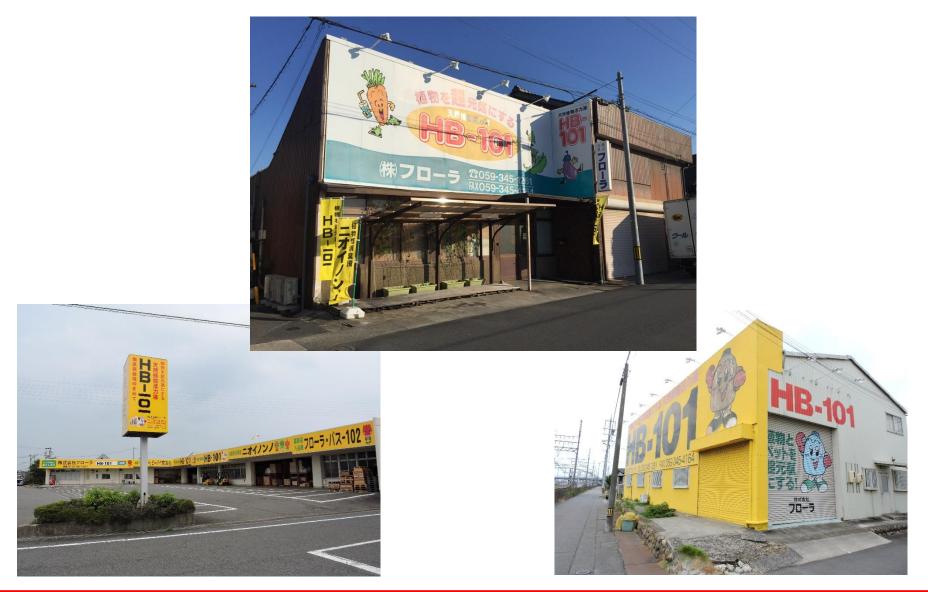


NATURAL PLANT VITALIZER HOB-101 MAKE ALL THE PLANTS SUPER ENERGETIC !!

For creating tomorrow with Biotechnology

FLORA Co., Ltd.


: FLORA Co., Ltd. Name of Company

Company Executive : Yoshinari Kawase

Establishment : 1976

FLORA Co., Ltd.

<u>Scenery of the birthplace of</u> <u>HB-101</u> (Inabe city Mie prefecture)

What is HB-101?

No Fertilizer!	No Pesticide!	Pesticide! No Hormone!	
for plants		for human	
Fertilizer	=	Food	
Pesticide	=	Medicine	
HB-101 (Plant Vitali	zer) = Supp	lement (Red Bull)	

This is The Natural Plant Vitalizer!

《HB-101 is made from 100 % natural ingredients. **》**

Ceder, Cypress, Pine

The tree sap from Ceder, Cypress and Pine has the power of strength that keeps the nutrition to maintain the tree and keeps out of the enemies from outside.

Plantain grass

It is well-known as the drug plant and has effect for the anti-flammatory and the antitussive activity.

HB-101

Fertilizer components analysis				
Water soluble Nitrogen (as N)	10.0 ~ 50.0 mg / kg			
Water-soluble Phosphoric Acid (as P ₂ O ₅)	1.0 ~ 5.0 mg / kg			
Water-soluble Potassium (as K ₂ O)	1.0 ~ 5.0 mg / kg			
Total Sulfur (as S)	1.0 ~ 10.0 mg / kg			
Calcium (Ca)	0.5 ~ 3.0 mg / kg			
Magnesium (Mg)	0.3 ~ 3.0 mg / kg			
Iron (Fe)	0.01 mg ~ 0.05 mg / kg			
Zinc (Zn)	0.01 ~ 0.05 mg / kg			
Silicon (Si)	1.0 ~ 5.0 mg / kg			

Agricultural chemicals analysis				
Parathion	N. D.			
Diazinon	N. D.			
Benzene hexachloride (BHC)	N. D.			
EPTC	N. D.			
Pyraclofos	N. D.			

Toxic metals analysis				
Cadmium (Cd)	N. D.			
Lead (Pb)	N. D.			
Mercury (Hg)	N. D.			
Chromium (Cr)	N. D.			
Arsenic (As)	N. D.			

No other 195varieties of agricultural chemicals are detected.

No other harmful metals are detected.

Hydrogen-ion concentration (pH)

Undiluted solution of HB-101 ► approx. pH3.5 (acidic)

Over 1000 times diluted solution of HB-101▶ approx. pH6.5 (weak acidic)

The yields of rice are 30% increased.

2 The sugar contents of fruits increase 1to8 degrees up.

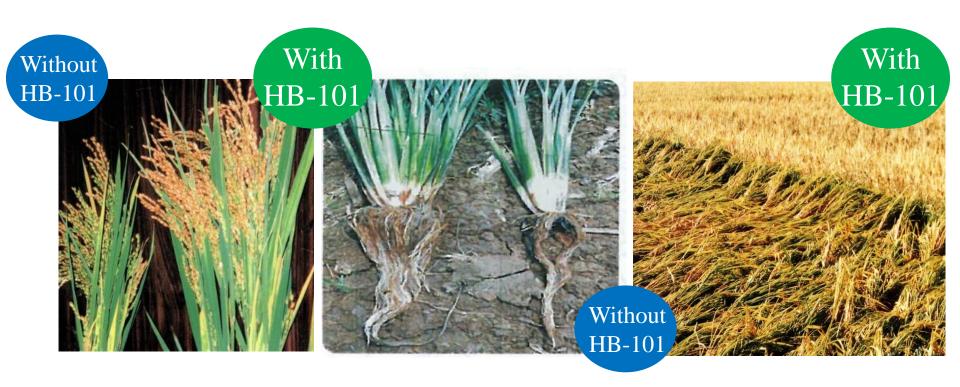
Produced the bigger vegetables and fruits.

4

5

6

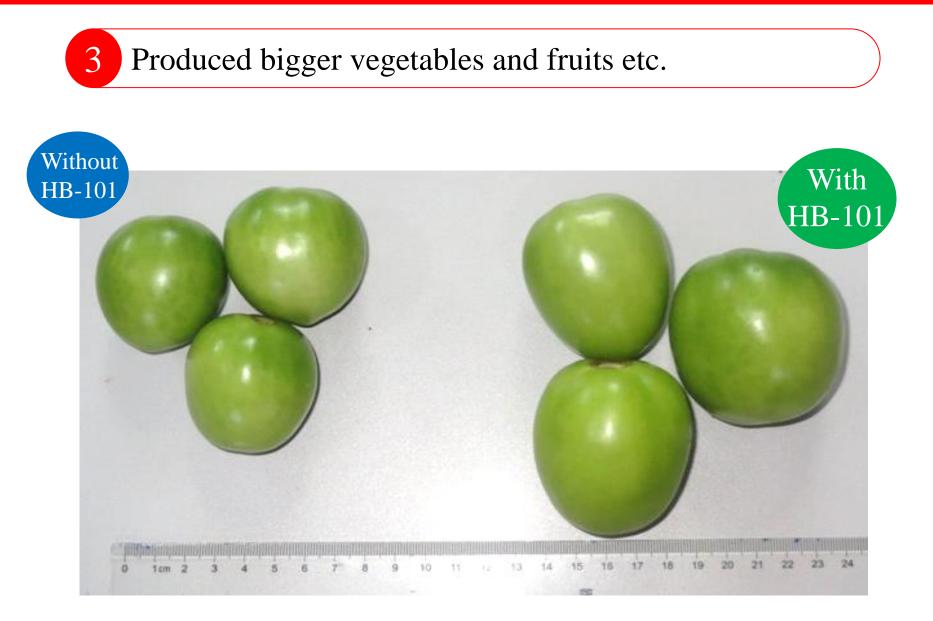
3

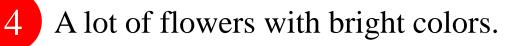

A lot of flowers with bright colors.

The weakening plant recovers.

Reducing the mass of agricultural chemicals.

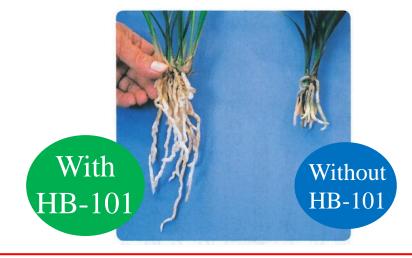
Increasing the yields and the qualities and the profits.


The sugar contents of fruits increase up to 1 to 8 degrees.

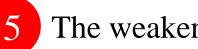


3

Produced bigger vegetables and fruits etc.







5

The weakening plant recovers.

The weakening plant recovers.

3 Effects expectations.

6 Reducing the mass of agricultural chemicals.

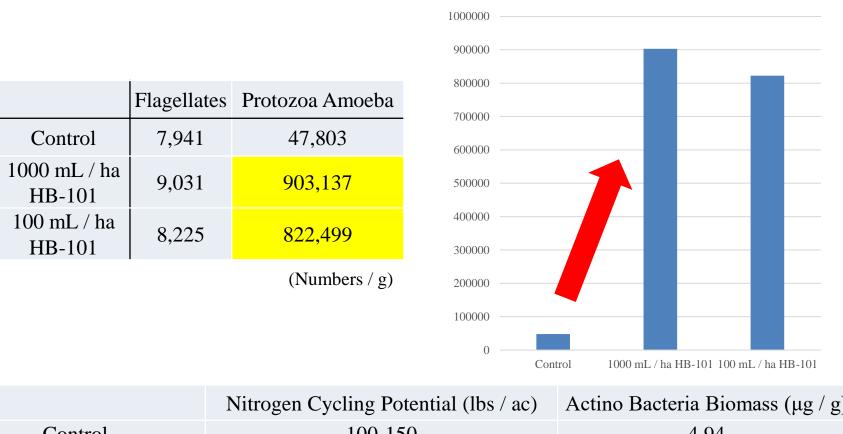
Increase of the yields and the qualities and the profits.

The number of useful microorganisms in the soil increases.

Well root spreading.

3

Preventing the crops from insects by growing strong and good color.

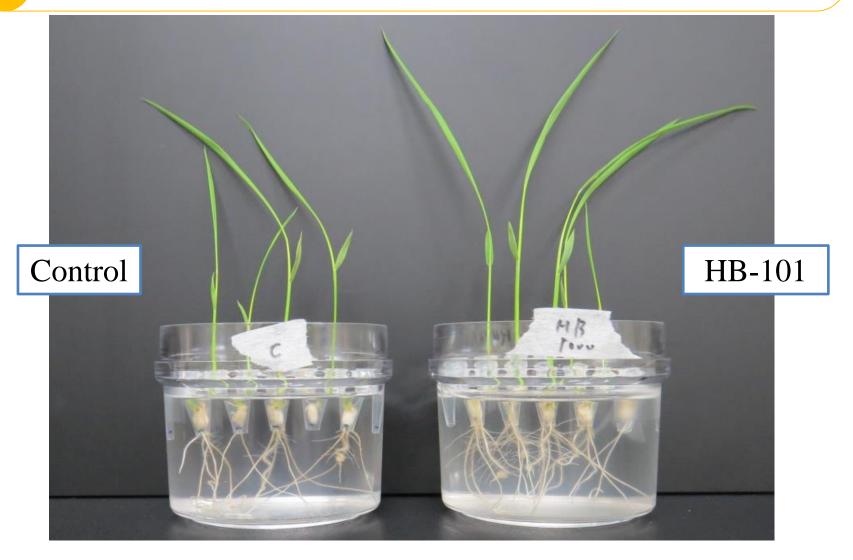

Production increased.

Getting bigger crops.

A sugar content of the fruits improved.

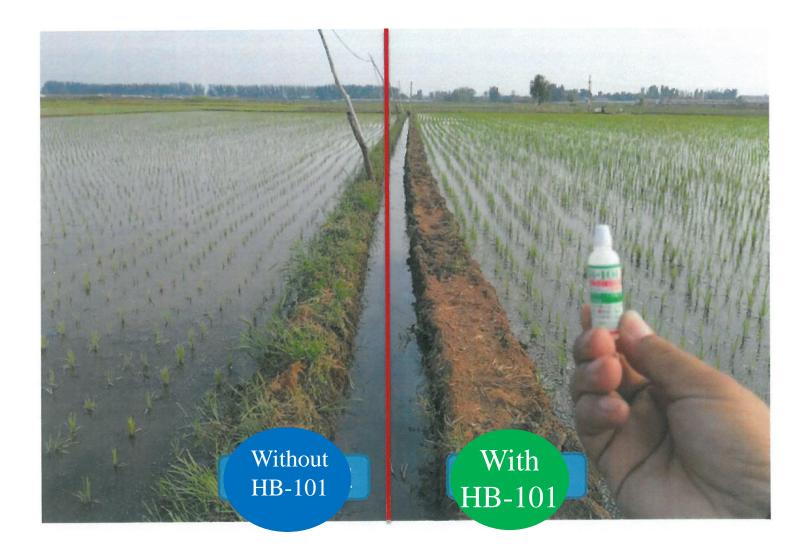
Increase of the healthy ingredients inside the crops.

The number of useful microorganisms in the soil increases.


Protozoa Amoeba

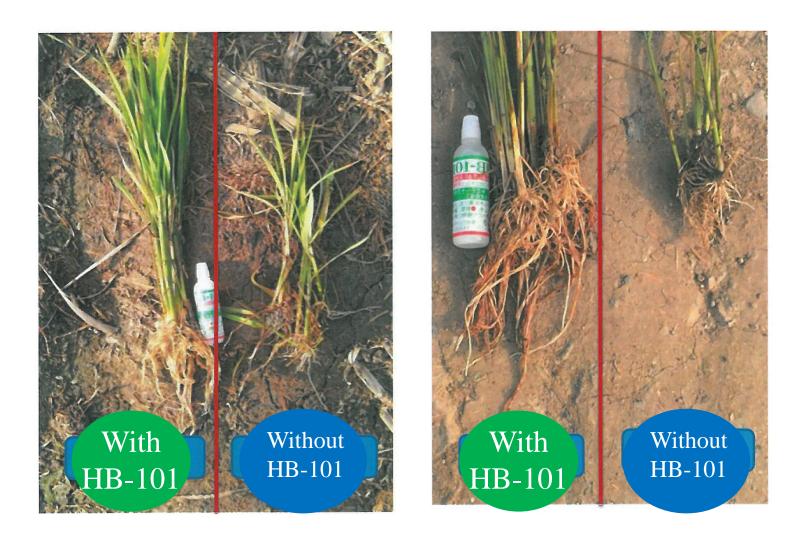
	Nitrogen Cycling Potential (lbs / ac)	Actino Bacteria Biomass (µg / g)		
Control	100-150	4.94		
1000 mL / ha HB-101	300+	11.2		
100 mL / ha HB-101	300+	10.2		

Well root spreading.


Well root spreading.

4 Effects expectations.

HB-101

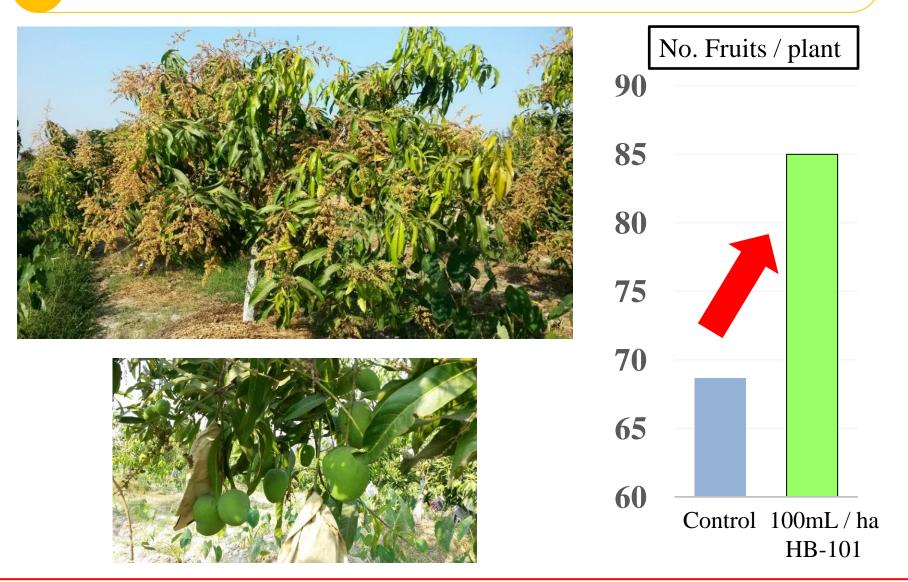

Seedlings after transplanting grow well

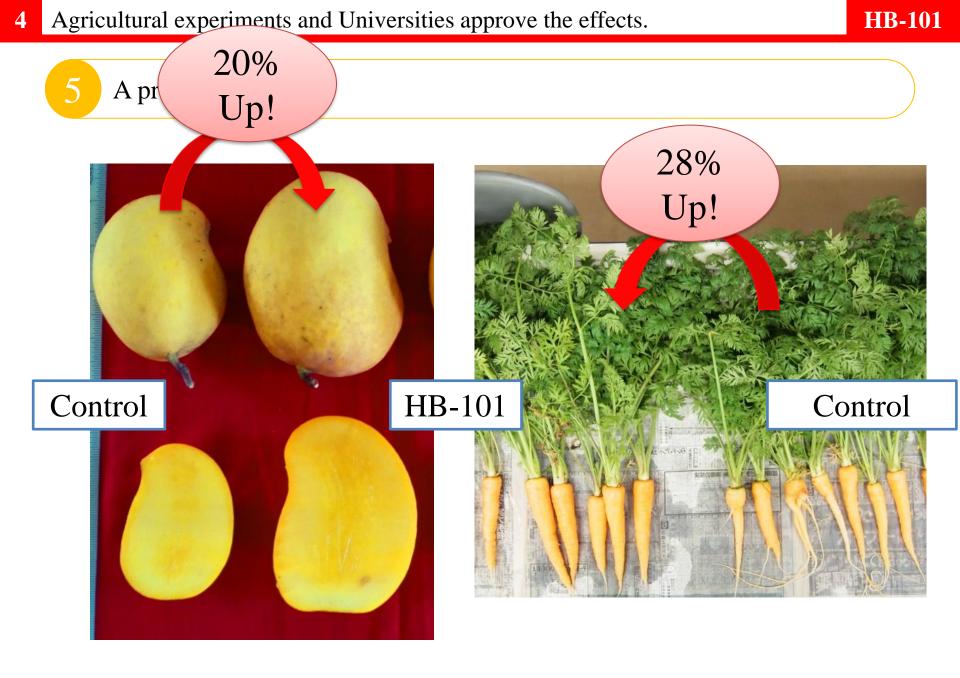
HB-101

Seedlings after transplanting grow well

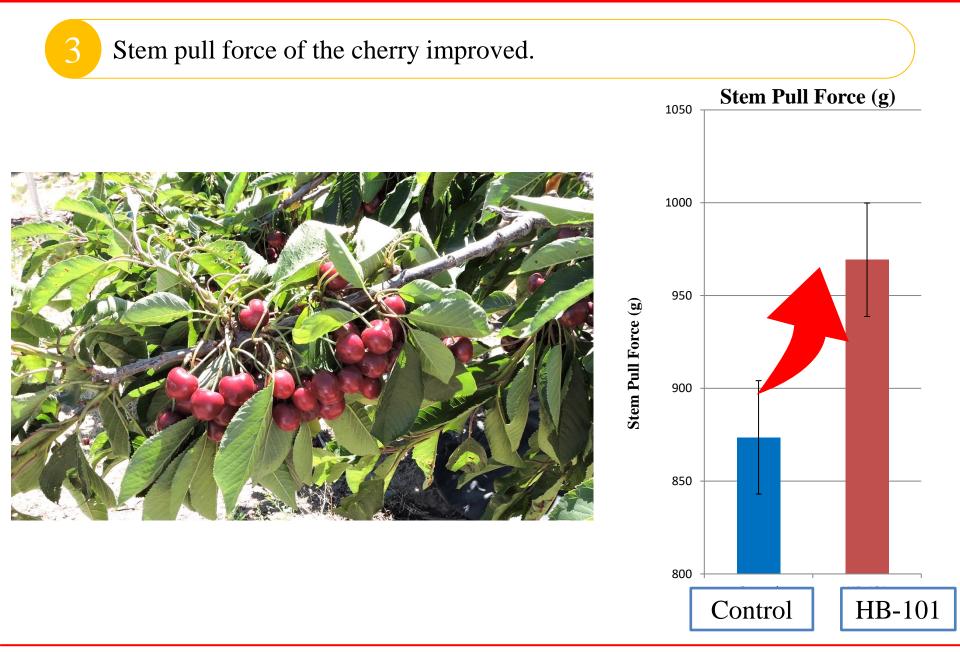
Control

Preventing the crops from the insects by growing strong and good colors.





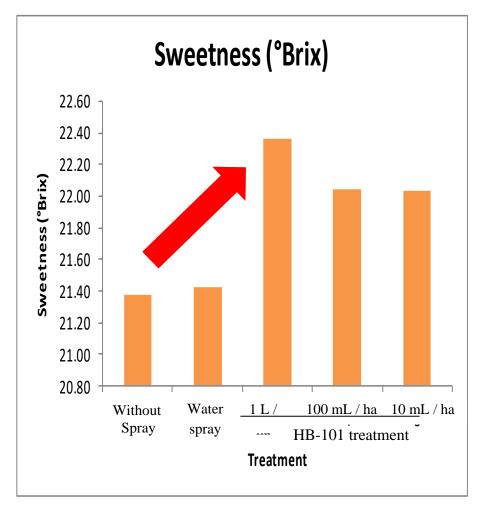
HB-101


HB-101

Production increased.

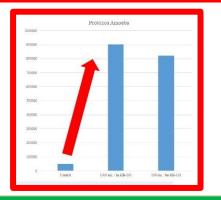
4 Agricultural experiments and Universities approve the effects.

Production increased.


4

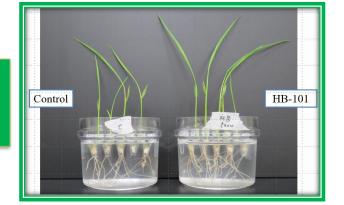
Pale Thwe			
Treatment	Yield (T/ha)	-	Comparison of the income with Control (MMK / ha)
HB-101 1000 mL/ha	6.48	+ 56.90	-51,079
HB-101 100 mL / ha	5.48	+ 32.69	217,892
Control	4.13	-	-
Yadanar Toe			
Treatment	Yield (T/ha)	-	Comparison of the income with Control (MMK / ha)
HB-101 1000 mL / ha	7.71	+ 78.47	156,921
HB-101 100 mL / ha	6.86	+ 58.80	455,892
Control	4.32	-	-

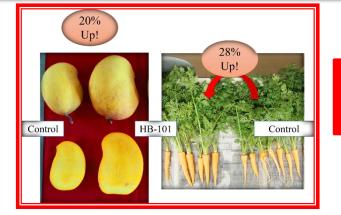
A sugar content of the fruit improved.



Increase of the healthy components inside the crops.

Control	HB-101		
	Control	HB-101	
Vitamin A (retinol conversion)	272.0	341.0	µg / 100g
Retinol	N. D.	N. D.	μg / 100g
α-carotene	N. D.	7.0	μg / 100g
β-carotene	3270.0	4090.0	µg / 100g
Iron	2.7	3.5	mg / 100g
Total chlorophyll	60.5	72.5	mg / 100g
Chlorophyll a	42.0	51.5	mg / 100g
Chlorophyll b	18.0	20.5	mg / 100g

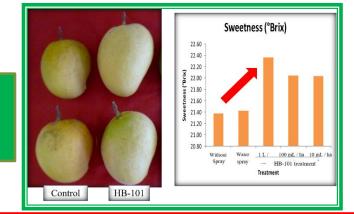

4 Agricultural experiments and Universities approve the effects.



Improve the soil environment ! The number of useful microorganisms in the soil increases.

Rooting of crops improves and growth is promoted ! Well root spreading.

Preventing the crops from the insects by growing strong and good colors.



The products grew big, becomes heavy, the yield increases !

The quality of the harvest is improved !

A sugar content of the fruit improved. Increase of the healthy components inside the crops.

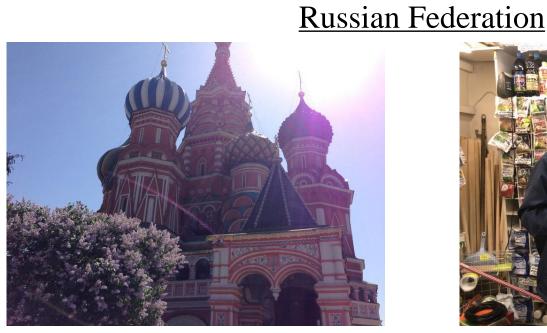
Flora Co., Ltd. Collaborative research / Contracted research / Analysis trustee 5

HB-101

<educational as<="" institutions="" such="" td=""><td><public institution=""></public></td><td><civilian agency=""></civilian></td></educational>	<public institution=""></public>	<civilian agency=""></civilian>
Universities>	Yamanashi Prefectural Agricultural Technology	Shinko Sangyo Co., Ltd. (Japan)
Mie University (Japan)	Center (japan)	JA-Tomakomai (Japan)
• · · • • • • • • • • • • • • • • • • •	Aichi Agricultural Research Centre (Japan)	Mie Prefecture Environmental Conservation
Kanazawa University (Japan)	Nagano Agriculture Extension Center (Japan)	Agency (Japan)
Gifu University (Japan)	Chiba Prefectural Agriculture Experiment	Foundation of Food Analysis Technology Centre SUNATEC (Japan)
Ishikawa Prefectural University (Japan)	Station (Japan)	Japan Food Research Laboratories (Japan)
Chiba University (Japan)	Gifu Prefectural Livestock Experiment Station	Japan Fertilizer and Feed Inspection Association
Kinki University (Japan)	(Japan)	(Japan)
Fujita Health University (Japan)	Yamanashi Prefectural Livestock Experiment	Japan Fine Ceramics Centre (Japan)
	Station (Japan)	Foundation of Nagano agriculture and forestry
Hyogo Prefectural Agricultural High	Kanagawa Prefectural Livestock Experiment	Research (Japan)
School (Japan)	Station (Japan)	Aichi Pharmaceutical Association (Japan)
Hisai-Nourin Agricultural High School	Gifu Prefectural Poultry Experiment Station	Toin agricultural cooperative (Japan)
(Japan)	(Japan)	Shimadzu Techno-Research, Inc. (Japan)
University of Oregon (U. S. A.)	Vegetable and Fruit Research and	UBE Scientific Analysis Laboratory, Inc. (Japan)
Oregon State University(U. S. A.)	Development Center (Myanmar)	Sumika Chemical Analysis Service, Ltd. (Japan) Tokai-techno Co., Ltd. (Japan)
California Polytechnic State University	Myanmar Rice Research Centre (Myanmar)	ACEL, Inc. (Japan)
	Hubei Soil and Manuer Research Institute	Unichemy Co., Ltd. (Japan)
(U. S. A.)	(China)	Remote medicine Research Centre Co., Ltd.
Kasetsart University (Thailand)	Department of Vegetable Sciences (India)	(Japan)
Chiang Mai University (Thailand)	U. P. Council of Sugarcane Research (India)	Japan Environment Science Co., Ltd. (Japan)
Huazhong Agricultural University	ICAR A. P. Centre Basar (India)	Dalton Co., Ltd. (Japan)
(China)	Central institute of post-harvest Engineering	Riken Analysis Center, Inc., (Japan)
Sher-e-Kashmir University of	& Technology (India)	SuiShoDo Pharmaceutical Corporation (Japan)
	Agriculture Development Government of	Iwatani Corporation (Japan)
Agricultural Sciences (India)	Punjab (Pakistan)	Fujii development laboratory Co., Ltd. (Japan)
University of Horticulture and Forestry	National Agricultural Research Council	The UGAR Sugar Works & Limited (India)
(India)	(Pakistan)	
CCS Haryana Agricultural University	Kushchevsky interdistrict branch of FGU	
(India)	Krasnodar (Russia)	
× /		

6 The sales performance of HB-101.

More than 1,400,000 of users in JAPAN!



HB-101 was exported to more than 50 countries in the World!

Korea	Jordan	Czech	U.S.A	Spain	Ghana	Norway	Chile
Taiwan	Saudi Arabia	Austria	Canada	Portugal	Uganda	Sri Lanka	Uruguay
Russia	Israeli	Switzerland	Mexico	Italy	South Africa	Thailand	Argentina
Denmark	UAE	Belgium	Brazil	Cyprus	Tanzania	Malaysia	Lithuania
Netherland	Kuwait	Luxembourg	Peru	Greece	Kenya	Indonesia	Australia
Germany	Iran	Sweden	Puerto Rico	Turkey	the Sudan	Singapore	Papua New Guinea
France	Senegal	Finland	Dominica	Egypt	Bangladesh	New Zealand	Nepal

The United States of America

People's Republic of China

The Kingdom of Thailand

Kingdom of Cambodia

Myanmar

HB-101

Socialist Republic of Vietnam

Make all the plant super energetic Natural Plant Vitalizer

For creating tomorrow with Biotechnology

Flora Co., Ltd.

3-39, Hasedashicho, Yokkaichi Mie 510-0855 Japan Tell : +81-59-345-1261 Fax : +81-59-345-4164 www.HB-101.co.jp E-mail : info@HB-101.co.jp